The Faraday Instituion - ReLib Home

Publications

One of the most commonly used battery cathode types is lithium iron phosphate (LiFePO4) but this is rarely recycled due to its comparatively low value compared with the cost of processing. It is, however, essential to ensure resource reuse, particularly given the projected size of the lithium-ion battery (LIB) market.

...

Large-scale recycling and regeneration of lithium-ion cathode materials is hindered by the complex mixture of chemistries often present in the waste stream. We outline an efficient process for the separation and regeneration of phases within a blended cathode. We demonstrate the efficacy of this approach using cathode material from a first generation 1 (Gen 1)...

Deep Eutectic Solvents (DESs) have been lauded as novel solvents, but is there really a difference between them and concentrated aqueous brines? They provide a method of adjusting the activity of water and chloride ions which can affect mass transport, speciation and reactivity. This study proposes a continuum of properties across concentrated ionic fluids and...

Niobium based anodes are gaining increasing popularity for application in high-power lithium-ion batteries, due to their high theoretical capacities, inherent safety at high current densities, and long-term stability. Here, we report the discovery and characterisation of a new Wadsley Roth niobate system, Nb7Ti1.5Mo1.5O25, showing that it is isostructural with known systems: Nb9PO25 and Nb9VO25.

...

Disassembly of electric vehicle batteries is a critical stage in recovery, recycling and re-use of high-value battery materials, but is complicated by limited standardisation, design complexity, compounded by uncertainty and safety issues from varying end-of-life condition. Telerobotics presents an avenue for semi-autonomous robotic disassembly that addresses these challenges.

...

While electric vehicles are seen as an important tool in the decarbonisation of transport, pack and module architectures make disassembly and recycling slow and complex. Removal of physical fastenings such as clips, screws, welds and adhesives are the rate limiting factor in pack to cell disassembly.

...